Section B.2 Entering Expressions
ΒΆSubsection Parentheses
Order of Operations: The calculator follows the standard order of operations.Example B.6.
Compute \(2+3\cdot 4\text{.}\) Press
\(2\,\) +
\(\,3\,\) X
\(\,4\) ENTER
Ans. \(14\)
Example B.7.
Compute \((2+3)\cdot4\text{.}\) Press
(
\(\,2\,\) +
\(\,3\,\) )
X
\(\,4\) ENTER
Ans. \(20\)
Example B.8.
Compute \(\dfrac{1}{2\cdot 3} \text{.}\) Press
\(1 \,\boxed{\div} \) (
\(\,2\,\) X
\(\,3\,\) )
ENTER
Ans. \(0.1666666667\)
Example B.9.
Compute \(\dfrac{1+3}{2} \text{.}\) Press
(
\(1 \, \) +
\(\,3\,\) )
\(\boxed{ \div } \,2\,\) ENTER
Ans. \(2\)
Subsection Exponents and Powers
Exponents: We use the caret key, ^
, to enter exponents or powers.
Example B.10.
Evaluate \(2^{10}\text{.}\)
\(2\) ^
\(10\) ENTER
Ans. \(1024\)
Example B.11.
Evaluate \(57^{2}\text{.}\)
\(57~\boxed{x^2}\,\) ENTER
Ans. \(3249\)
Example B.12.
Evaluate \(8^{2/3}\text{.}\)
\(8\,\) ^
(
\(2 ~ \boxed{\div} \, 3 \,\) )
ENTER
Ans. \(4\)
Subsection Roots
Square Roots: We access the square root by pressing2nd
x2, and the display shows β(. The calculator automatically gives an open parenthesis for the square root, but not a close parenthesis.
Example B.13.
Evaluate \(\sqrt{2} \text{.}\)
2nd
\(\boxed{x^2} \,2\,\) )
ENTER
Ans. \(1.414213562\)
Example B.14.
Evaluate \(\sqrt{9+16} \text{.}\)
2nd
\(\boxed{x^2} \,9+16\,\) )
ENTER
Ans. \(5\)
)
at the end of the radicand to tell the calculator where the radical ends.
Example B.15.
Evaluate \(\sqrt{9}+16 \text{.}\)
2nd
\(\boxed{x^2} \,9\) )
\({}+{}16\,\) ENTER
Ans. \(19\)
MATH
to open the Math menu and press 4 (see Figure B.16).

Example B.17.
Compute \(\sqrt[3]{1728} \text{.}\)
MATH
\(~4~\) \(\, 1728\,\) )
ENTER
Ans. \(12\)
)
can be omitted if there are no operations following the radical.
Other Roots: For nth roots, we press MATH
to open the Math menu and press 5 (see Figure B.16a). The calculator symbol for nth roots, xβ , does not include an open parenthesis,(
. If the radicand includes an operation, we must enclose it in parentheses.
Example B.18.
Compute \(\sqrt[10]{2\cdot 512} \text{.}\)
\(10\,\)MATH
\(~5~\) (
\(2\) x
\(512\) )
ENTER
Ans. \(2\)
Subsection Absolute Value
TI calculators use abs(x) instead of |x| to denote the absolute value of x. The absolute value function is the first entry in the MATH NUM menu (see Figure B.19). The calculator gives(
for the absolute value function, but not )
.

Example B.20.
Evaluate \(\dfrac{\abs{21\cdot 54 - 81}}{-9} \text{.}\)
MATH
\(\boxed{\rightarrow}\) ENTER
\(21\) X
\(54\) -
\(81\) )
\(\,\boxed{\div} \) (-)
\(9\) ENTER
Ans. \(-117\)
Subsection Scientific Notation
The TI calculators display numbers in scientific notation when the numbers use too many digits to display.Example B.21.
Compute \(123,456,789^2 \text{.}\) Enter
\(123456789 ~ \boxed{x^2}\) ENTER
Ans. \(1.524157875 \text{ E }16\)
2nd
,
.
Example B.22.
To enter \(3.26 \times 10^{18}\text{,}\) use the keying sequence
\(3.26\) 2nd
,
(-)
\(18\) ENTER
Ans. \(3.26 \text{ E}\) \(-18\)
Troubleshooting.

Using the negative key,
(-)
, when you wanted the subtraction key,-
, or vice versa.Omitting a
(
or)
. Each(
should have a matching)
.