Section B.2 Entering Expressions
¶Subsection Parentheses
Order of Operations: The calculator follows the standard order of operations.
Example B.6.
Compute \(2+3\cdot 4\text{.}\) Press
\(2\,\) +
\(\,3\,\) X
\(\,4\) ENTER
Ans. \(14\)
Example B.7.
Compute \((2+3)\cdot4\text{.}\) Press
(
\(\,2\,\) +
\(\,3\,\) )
X
\(\,4\) ENTER
Ans. \(20\)
Example B.8.
Compute \(\dfrac{1}{2\cdot 3} \text{.}\) Press
\(1 \,\boxed{\div} \) (
\(\,2\,\) X
\(\,3\,\) )
ENTER
Ans. \(0.1666666667\)
Example B.9.
Compute \(\dfrac{1+3}{2} \text{.}\) Press
(
\(1 \, \) +
\(\,3\,\) )
\(\boxed{ \div } \,2\,\) ENTER
Ans. \(2\)
Subsection Exponents and Powers
Exponents: We use the caret key, ^
, to enter exponents or powers.
Example B.10.
Evaluate \(2^{10}\text{.}\)
\(2\) ^
\(10\) ENTER
Ans. \(1024\)
Squaring: There is a short-cut key for squaring, \(\boxed{x^2}\text{.}\)
Example B.11.
Evaluate \(57^{2}\text{.}\)
\(57~\boxed{x^2}\,\) ENTER
Ans. \(3249\)
Fractional Exponents: Fractional exponents must be enclosed in parentheses!
Example B.12.
Evaluate \(8^{2/3}\text{.}\)
\(8\,\) ^
(
\(2 ~ \boxed{\div} \, 3 \,\) )
ENTER
Ans. \(4\)
Subsection Roots
Square Roots: We access the square root by pressing 2nd
\(\boxed{x^2} \text{,}\) and the display shows \(\sqrt{}(\text{.}\) The calculator automatically gives an open parenthesis for the square root, but not a close parenthesis.
Example B.13.
Evaluate \(\sqrt{2} \text{.}\)
2nd
\(\boxed{x^2} \,2\,\) )
ENTER
Ans. \(1.414213562\)
Example B.14.
Evaluate \(\sqrt{9+16} \text{.}\)
2nd
\(\boxed{x^2} \,9+16\,\) )
ENTER
Ans. \(5\)
In the next example, note that we must enter )
at the end of the radicand to tell the calculator where the radical ends.
Example B.15.
Evaluate \(\sqrt{9}+16 \text{.}\)
2nd
\(\boxed{x^2} \,9\) )
\({}+{}16\,\) ENTER
Ans. \(19\)
Cube Roots: For cube roots, we press MATH
to open the Math menu and press \(4\) (see Figure B.16).
Example B.17.
Compute \(\sqrt[3]{1728} \text{.}\)
MATH
\(~4~\) \(\, 1728\,\) )
ENTER
Ans. \(12\)
For evaluating cube roots and square roots, )
can be omitted if there are no operations following the radical.
Other Roots: For \(n\)th roots, we press MATH
to open the Math menu and press \(5\) (see Figure B.16a). The calculator symbol for \(n\)th roots, \(\sqrt[x]{~} \text{,}\) does not include an open parenthesis,(
. If the radicand includes an operation, we must enclose it in parentheses.
Example B.18.
Compute \(\sqrt[10]{2\cdot 512} \text{.}\)
\(10\,\)MATH
\(~5~\) (
\(2\) x
\(512\) )
ENTER
Ans. \(2\)
Notice that we enter the index 10 before the radical symbol.
Subsection Absolute Value
TI calculators use \(abs (x)\) instead of \(\abs{x}\) to denote the absolute value of \(x\text{.}\) The absolute value function is the first entry in the MATH NUM menu (see Figure B.19). The calculator gives (
for the absolute value function, but not )
.
Example B.20.
Evaluate \(\dfrac{\abs{21\cdot 54 - 81}}{-9} \text{.}\)
MATH
\(\boxed{\rightarrow}\) ENTER
\(21\) X
\(54\) -
\(81\) )
\(\,\boxed{\div} \) (-)
\(9\) ENTER
Ans. \(-117\)
Subsection Scientific Notation
The TI calculators display numbers in scientific notation when the numbers use too many digits to display.
Example B.21.
Compute \(123,456,789^2 \text{.}\) Enter
\(123456789 ~ \boxed{x^2}\) ENTER
Ans. \(1.524157875 \text{ E }16\)
This is how the calculator displays the number \(1.524157875 \times 10^{16}\text{.}\) Notice that the power \(10^{16}\) is displayed as \(\text{ E }16\text{.}\)
To enter a number in scientific form, we use the key labeled EE, or 2nd
,
.
Example B.22.
To enter \(3.26 \times 10^{18}\text{,}\) use the keying sequence
\(3.26\) 2nd
,
(-)
\(18\) ENTER
Ans. \(3.26 \text{ E}\) \(-18\)
Troubleshooting.
If your calculator gives you an error message like this, you may have made one of the following common mistakes:
Using the negative key,
(-)
, when you wanted the subtraction key,-
, or vice versa.Omitting a
(
or)
. Each(
should have a matching)
.
Press \(2\) to Go to the error, and see Editing Expressions B.3 below.